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SUMMARY 
A control volume-based solution of the complete set of Navier-Stokes equations for the laminar, three- 
dimensional developing flow in elliptical cross-section ducts is described. Numerical results for velocity and 
pressure development, pressure defect and entrance lengths are presented for a wide range of aspect ratios 
from 0.1 to 0.999. The present results match very well with earlier numerical solutions for developing flow in 
a circular duct and the fully developed flow in elliptical ducts. A comparison with earlier numerical and 
experimental data for developing flow in elliptical ducts is also satisfactory for pressure development but not 
so good for the velocity profiles. The relative growth rate of boundary layer thickness along the major axis is 
slower than that along the minor axis which is contrary to the assumption used in earlier numerical analyses. 
The present results show no transverse recirculation contrary to the speculation based on earlier experi- 
mental data. The ratio of entry length in an elliptical duct to that in a circular duct with radius equal to the 
semi-major axis of the elliptical duct is nearly equal to the aspect ratio of the duct. In conformity with the 
previous work, the present results find the total pressure defect to be independent of the aspect ratio, with 
a value of 1-234. 

KEY WORDS Entrance flow Elliptical duct 

1. INTRODUCTION 

It is well known that an external flow over a cylinder of elliptical cross-section experiences less 
pressure drop than that over a cylinder of circular cross-section. This has led to the manufacture 
of heat exchangers with elliptical tubes. For the optimization of these heat exchangers, accurate 
information regarding flow and temperature development in the entrance region of elliptical 
ducts is essential, specially when the tubes are of short length. 

Toa’ presented closed-form solution for the laminar fully developed velocity profile in elliptical 
ducts using complex variable approach. Lundgren et al.’ devised an approximate method to 
determine the pressure defect in the entrance region due to increased friction and momentum of 
the fluid. Later McComas3 extended the analysis of Lundgren et al.’ to predict the hydrodynamic 
entrance length. Chiranjivi and Prasad4 measured friction factors in three elliptical ducts with 
aspect ratio 0.25,0.5 and 0.75. Shah and London5 pointed out that the straight duct upstream of 
the test section of Reference 4 was of insufficient length for the flow to be fully developed. 
Consequently, the results of Reference 4 are valid neither for the developing region nor for the 
fully developed region. Later Rao et aL6 compared their experimental data for fully developed 
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friction factor for aspect ratio 0.25 with the analytical results, and found the difference to be & 10 
per cent. 

Bhatti7 was perhaps the first to predict the developing axial velocity and pressure distribu- 
tion in the entrance region of elliptical ducts. He presented closed-form solutions using the 
Karman-Pohlhausen integral method. This method requires the velocity profile within the 
boundary layer as well as axial growth of the boundary layer thickness to be assumed for a three- 
dimensional flow. Bhatti' assumed the ratio of boundary layer thickness along the minor and 
major axes to be equal to the aspect ratio of the duct throughout the entrance length. This 
assumption is correct for a circular duct (where the aspect ratio is unity and the flow is symmetric) 
and becomes increasingly poor as the aspect ratio deviates from unity, specially near the duct 
entrance. Bhatti also assumed that at the duct inlet the streamwise growth of boundary layer is 
identical to that on a flat plate at zero incidence. However, while the former is influenced by the 
favourable pressure gradient, the latter has no pressure gradient. 

Later Garg and Velusamy* developed an approximate numerical model to eliminate the 
assumption made by Bhatti7 regarding the streamwise growth of the boundary layer. Their model 
is approximate in the sense that they did not solve all the three momentum equations. They found 
that the entrance lengths predicted by Bhatti7 are larger for aspect ratios close to unity and 
shorter for aspect ratios away from unity. They also found the total pressure defect to be a weak 
monotonic function of the aspect ratio. However, Bhatti's analysis predicts it to be 7/6 for any 
aspect ratio. Garg and Velusamy6 also compared their numerical results with the experimental 
data of Abdel-Wahed et a1.' for aspect ratio of 0.5 at some axial locations. They found a good 
comparison for the velocity profiles but not so good for the pressure distribution. It was felt that 
the discrepancy could be due to the approximate nature of the analysis,* and a more rigorous 
numerical model ought to be adopted. Herein, we present a numerical solution for this complex 
three-dimensional flow by solving all the three momentum equations along with the continuity 
equation for various aspect ratios of the duct. 

2. ANALYSIS 

Consider an incompressible, Newtonian fluid entering a straight duct of elliptical cross-section. 
We assume negligible body forces and laminar flow with constant properties. In conformity with 
existing developing flow solutions in straight ducts, momentum diffusion in the axial direction is 
neglected in comparison with that in the cross-stream direction. This assumption renders the 
governing equations parabolic in the axial direction. We use elliptic cylinder co-ordinates (<, q, z) 
as shown in Figure 1. This co-ordinate system consists of an orthogonal family of confocal ellipses 
and hyperbolas in a plane, translated in the third (axial here) direction normal to the plane. The 
surfaces q = constant are the confocal elliptic cylinders 

X2 Y 2  
( ~ c o s h q ) ~ + ( c  sinhq)2=1' 

while the surfaces 5 = constant are the hyperbolic cylinders 

(c cos <)2 (c sin 41)' - '. X2 Y2 

The normalized equations for conservation of mass and momentum are'' 
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z= const = T I /  2 L =const 

--X 

5: 3n/2 
Figure 1. Elliptic-cylinder co-ordinate system 

i a2v a2v 1 apt 
H [ a t  1 H 

l a  a i a  
H Z  a t  H Z  all az (HUV)+-- (HV~)+-(VW)=~ ?+y -- 

The integral form of the continuity equation at any duct cross-section is 

In equations (2a)-(2c) the pressure field P(& q, 2)  has been split into two parts such that 

This approximation has been used extensively for parabolic confined flows. 



1082 K. VELUSAMY AND V. K. GARG 

Due to symmetry only a quarter of the duct needs to be considered for the analysis. Hence, the 
boundary conditions to be imposed are 

av aw 
U=-=-=O along t=O, 4 2  for all q and 2, at at 

aw au 
all av 

for all 5 and Z, _- - V=-=O along q = O  

U =  V =  W=O along q = q w  for all 5 and Z, 

U =  V = P = O  and W= 1 at Z=O for all t and q. (4) 

Equations (1)-(4) form a complete set of equations for the three components of velocity and two 
parts of pressure. The pressure defect, K, at any axial location is given by 

where (dP/dZ), is the fully developed pressure gradient in the duct. 

3. SOLUTION 

Since no analytical solution is known to this set of non-linear, interlinked partial differential 
equations, numerical solution is resorted to. The control volume-based discretization method' ' 
has been used. The discretization equations are given in the Appendix 11. The solution at any 
marching axial location is obtained in two stages. The first stage contains the solution for axial 
velocity component and duct average pressure from equations (2c) and (3). The second stage 
contains the solution for cross-stream velocity components and deviational pressure from 
equations (l), (2a) and (2b). At any axial marching location these two stages are repeated 
sufficiently to account for non-linearity and interlinkage of the equations. The procedure adopted 
for the solution is a modified form of Patankar and Spalding's method" for parabolic flows. The 
major modifications include (i) use of SIMPLER algorithm' ' for resolving the cross-stream 
pressure-velocity coupling and (ii) use of Raithby and Schneider's methodI3 for evaluating the 
axial pressure gradient. During discretization of the governing equations, the convection and 
diffusion fluxes are combined using upwind scheme.' ' Power-law scheme' was also used initially 
in some cases to check if any undue numerical diffusion is present in the use of upwind scheme. 
A maximum difference of - 3 per cent was found in pressure and pressure defect very close to the 
entrance, with much less difference away from the entrance. The maximum difference in the 
centreline velocity was only 0 3  per cent. The difference in the flow development length between 
the two schemes is 0.9 per cent. Hence, only upwind scheme was used for all subsequent 
calculations and for the results given here. 

The discretization procedure yields a set of algebraic equations for each variable. The pen- 
tadiagonal system of algebraic equations for each variable is solved by a plane-by-plane 
method.14* '' This method is an extension of the Thomas algorithm for the tridiagonal system of 
equations. Convergence at any marching step is assumed once the absolute sum of the residue 
R, corresponding the variable in the discretization equation is less than E, where 

The value of E is taken to be 5 x lo-' for cross-stream equations and lo-' for axial momentum 
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and integral continuity equations. No significant change in the results was observed when the 
value of E for cross-stream equations was reduced to 

In the cross-stream (t-q) plane, a 22 x 25 non-uniform grid pattern was used for 150.5. For 
I=0.7 and 0.9, grid patterns of 19 x 25 and 22 x 28, respectively, were used. Grids were packed 
near the duct wall where large velocity gradients persist. A grid independency test was also 
conducted. A grid pattern of 13 x 16 (with grid sizes nearly double that of the 22 x 28 grid) was 
also used for 1 = 09. The maximum differences in the centreline axial velocity, average pressure in 
the duct, pressure defect and flow development length computed using the two grid patterns are 
0.4, 1*4,1.9 and 1.2 per cent, respectively. Hence, the grid size selected is satisfactory. 

were used near the duct entrance for all aspect 
ratios except for 1=O-l where it was lo-’. As the flow developed, the step size was gradually 
increased to 5 x 2 x and 5 x respectively, for ,l=0-9,0.7,05,0*3 and 
0.1. The total number of axial steps used were 1396, 1590,2736,4824 and 25108, respectively, for 
I=0.9,0.7,0.5,0.3 and 0.1. ReIaxation factors of 0-8 for the momentum equations and 0-6 for 
pressure equations were used. The flow was assumed to be fully developed once the centreline 
axial velocity reached 99 per cent of the fully developed value. 

In the axial direction very fine grids of size 

4. ACCURACY 

In order to validate the computer program, the well-studied problem of flow development in 
a circular pipe was computed first. The aspect ratio for this study was taken to be 0.999 since the 
co-ordinate transformation does not hold for A= 1. The computed results of axial velocity at 
various radial positions, duct average pressure and pressure defect as a function of axial location 
were compared with the numerical results of HornbeckI6 for a circular pipe. The present axial 
velocity was found to match very well with Hornbeck’s valued6 in the entire duct. For the 
average pressure, a maximum difference of 2-7 per cent was observed close to the entrance, and it 
was much less away from the entrance. The pressure defect predicted by Hornbeck16 was found to 
be higher than the present value by 2.5 per cent. 

As another validation, fully developed flow velocity and pressure gradient in elliptical ducts 
were obtained for various values of the aspect ratio. These values were compared against the 
analytical result.5* The fully developed velocity profile is given by7 

W=2(1-X2- Y2). (5 )  

The present results for both velocity and axial pressure gradient match very well with the 
analytical results. 

5. RESULTS AND DISCUSSION 

Results were obtained for five vahes of the aspect ratio, 1=0.9,0.7,05,03 and 0-1. However, for 
brevity, results for 1=0-7 and 0.3 are not presented here. Results for the rest three aspect ratios 
are presented in the following form: 

(i) development of axial velocity component along the minor axis with y/b as a parameter, 
(ii) development of axial velocity component along the major axis with x/a as a parameter, 
(iii) isoaxial-velocity-component contours at various axial locations and 
(iv) development of duct average pressure, pressure defect and the duct pressure if the flow 

were fully developed at the entrance itself. 
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Figures 2(a)-2(c) depict the development of axial velocity along the minor axis for various 
values of the aspect ratio. It is clear that once the uniform flow enters the duct, fluid adjacent to 
the duct wall decelerates and that near the centerline accelerates continuously. The fluid at some 
intermediate location accelerates initially up to a certain axial length while it is in the core region 
but finally starts to decelerate once it is engulfed in the viscous region. Also shown in Figure 2 are 
the analytical results of Bhatti.' Bhatti's results differ from the present ones in the near-entrance 
region. In locations close to the duct wall, Bhatti's velocities are overpredicted and, consequently, 
in locations close to the duct axis they are underpredicted. The degree of this overprediction and 
underprediction increases as 1 decreases. This indicates that the actual boundary layer along the 
minor axis grows at a faster rate than that assumed by Bhatti. Similar observations on Bhatti's 
results were made by Garg and Velusamy.* 

The development of axial velocity along the minor axis of large aspect ratio ducts differs from 
that of small aspect ratio ducts. For example, let us compare Figures 2(a) and 2(c) corresponding 
to A=O.9 and 0.1, respectively. In Figure 2(a) at locations y/b=O-6 and 0-7, the velocity increases 
initially for low Z-values when the fluid is in the core region and reaches a maximum. Then it 
starts to reduce as Z increases further. However, this is not completely true for A=O-1.  Here also 
the velocity increases initially, reaches a maximum and then drops. But it increases again after 
a certain Z-value. This secondary increase is due to the efflux of fluid from the boundary layer 
developing along the major axis, with the relative growth rate of the boundary layer along the 
major axis, 6/u, being slower than that along the minor axis, 6/6. Such a secondary increase in 
velocity is not observed for aspect ratios close to unity where the boundary layer growth rates 
along the major and minor axes are nearly equal. 

I DATA POINTS BHATTI I1 1 Y/b 
0 . 0  
0.3 

0 . 5  

0.6 

0.7  

0.8 

0.9 

0.01 I I I 1 
0 2 4 6 8 

z x 100 

Figure 2(a). Development of axial velocity along the minor axis for 1 = 0.9 
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Figure 2(b). Development of axial velocity along the minor axis for L = 0.5 
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Figure Yc). Development of axial velocity along the minor axis for 2 = 0-1 
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2.5 

Experimental data of Abdel-Wahed et aL9 are also included in Figure 2(b) for 1=05 
Experimental results do not show a smooth variation of velocity at any y / b  location. Abdel- 
Wahed et aL9 attributed this to the existence of transverse recirculation in the developing region. 
However, they did not confirm this recirculation by measuring cross-stream velocity components. 
In the present results we did not find any such recirculation at any point in the duct. We may 
point out that the present model is capable of predicting any transverse recirculation. The 
parabolic assumption in the axial momentum equation breaks down only if the axial velocity 
component is negative, implying separated flow. Such a situation is not physical. Near the duct 
entrance (Z < 002) the present results differ from the experimental data considerably but beyond 
2 = 0.02 the comparison is satisfactory. 

Development of axial velocity along the major axis for various values of the aspect ratio is 
shown in Figures 3(a)-3(c). Comparison of Figure 3 with the corresponding Figure 2 reveals that 
the flow along the major axis develops at a slower rate than that along the minor axis. Also, this 
difference in the development rate increases as I decreases. This result is contrary to the 
assumption made by Bhatti' and Garg and Velusamy.' Bhatti's results are also presented in 
Figure 3. Clearly, Bhatti's results for axial velocity along the major axis are generally under- 
predicted, specially for I < 0.7. Also the degree of underprediction increases as I decreases. This 
indicates that the actual boundary layer growth along the major axis is slower than that assumed 
by Bhatti.' 

Experimental data of Abdel-Wahed et aL9 are also presented in Figure 3(b) for 1=05. The 
non-smooth variation of experimental data was again attributed to transverse recirculation. As 

I I I I 

- PRESENT RESULTS ; XzO.9 

DATA POINTS BHATTI [ 71 x/a 
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Figure 3(a). Development of axial velocity along the major axis for 1 = 0.9 
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Figure 3(b). Development of axial velocity along the major axis for 1 = 0 5  
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Figure 3(c). Development of axial velocity along the major axis for 1 = 0.1 
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already pointed out no such recirculation is observed in the present results. The present results 
differ considerably from the experimental data in the region 2 c 0.03 but beyond this region the 
comparison is somewhat satisfactory. Table I compares the fully developed velocity values from 
the present computations and the experimental datag with the analytical values from equation (5 )  
for A=05 The experimental values are less than the analytical values with a maximum difference 
of 12.1 per cent for x/a= 0-8. A deviation of about 1 per cent is expected in the present results since 
the flow is assumed to be fully developed once the centreline velocity reaches 99 per cent of the 
fully developed value. 

Figures 4(a) and 4(b) show contours of axial velocity component at six different axial locations 
in the duct for 2 = 0.9 and 0.5, respectively. From Figure 4(a), it is clear that the maximum axial 
velocity increases from 1-1 at  Z=OOOO3 to 1-9 at  Z=0-032. Also the contours are tightly packed 
near the duct wall at Z = 0.0003, indicating sharp velocity and pressure gradients. Moreover, they 
become increasingly sparse and approach fully developed contours as Z increases. These obser- 
vations are true for Figure 4(b) as well. We may mention that similar contours were found for 
other aspect ratios. However, while the axial velocity contours in Figure 4(a) are nearly concentric 
ellipses, those in Figure 4(b) are not. Thus, the assumption of Bhatti7 and Garg and Velusamy’ 
regarding the velocity profiles in the developing region is not correct for values of A away from 
unity. 

The duct average pressure, the pressure defect and the duct pressure if the flow were fully 
developed from Z=O onwards are shown in Figures 5(a)-5(c) for various A-values. The pressure 
gradient is the maximum at the entrance due to steep velocity gradient near the wall in this region, 
and it slowly approaches the fully developed value as Z increases. The pressure defect also 
increases sharply near the entrance and attains a constant value once the flow is fully developed. 
Figure 5 also contain Bhatti’s results7 for all aspect ratios and experimental datag for 2=0.5. It is 
clear that the pressure gradient and consequently the pressure defect estimated by Bhatti’s model 
are slightly higher than the present values near the entrance. This is true for all aspect ratios. Also, 
the measured pressure gradient and the pressure defect are much less than the theoretical values 
very close to the entrance. However, at  full development of the flow, the measured pressure defect 
is higher than the theoretical value. 

The pressure defect at Z =  2, was found to be almost independent of 2, having a value of 1.234. 
The same estimated by Bhatti’ and Lundgren et al.’ is 7/6 and 4/3, respectively. The present value 
lies between the two. It is known’ that the value of Lundgren et al.’ is overpredicted. In their 
approximate numerical analysis, Garg and Velusamy’ found the total pressure defect to be 

Table I. Analytical, numerical and experimental values of fully developed axial velocity 
for 1 = 0-5 

Analytical 
wr 

~ ~~~ 

Present results Experimental9 

YO Differ. 
from W, from W, 

W, YO Differ. W, 

0-9 
0-8 
0.7 
0.6 
0.5 
0-4 
0.2 

038 
0.72 
1.02 
1-28 
1.50 
1.68 
1.92 

0383 0.8 0362 4.7 
0.728 1.1 0.633 12.1 
1.025 0 5  0.957 6.2 
1.290 0.8 1.223 4.5 
1.507 0.5 1.468 2.1 
1.681 0.1 1.660 1.2 
1.905 0.8 1.894 1 -4 
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Figure qa). Constant axial velocity contours for 1 = 0.9 
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Figure qb). Constant axial velocity contours for 1 = 0-5 
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- PRESENT RESULTS ; h = 0 . 9  
0 aBHATT1 [ 7 I 

z *loo 
Figure 5(a). Development of axial pressure and pressure defect for 1 = 0.9 

o A BHATTI 7 1 

z XI00 
Figure 5(b). Development of axial pressure and pressure defect for L = 0 5  
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5.5  
PRESENT RESULTS ; k: 0.1 

4 . 5  o 4 BHATTI [ 3 I 

y 3.5 

h 
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0.5 
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Figure 5(c). Development of axial pressure and pressure defect for I ,  = 0.1 

Table 11. Development length ( Z , )  

a Present values 2, from 
Bhatti' 

zm L I Z , ,  

0.1 0.1234 0.053 0.053 1 
0.3 0.0925 0307 0-0574 
0.5 0.0703 0531 0-0610 
0.7 0.0605 0.725 0-0632 
0.9 0.0568 0.914 0.0641 
0.999 0.0557 1 .o 0.0642 

a weak function of A, varying from 1-16 to 1.06 for A=091 to 0.5. The experimental value' is 1-395 
which is even higher than that of Reference 2. 

Table I1 contains the dimensionless development length Z, and the ratio of development 
length in an elliptic duct, z,, to that in a circular duct, zmc, with radius equal to the semi-major 
axis of the elliptical duct for various values of A. As the duct cross-section becomes more and more 
elliptic, i.e. as A decreases, the development length decreases as can be seen from the ratio z,/zm,. 
This is due to the fact that as A decreases, the hydraulic diameter decreases, and thus the flow 
becomes developed over shorter lengths. It is interesting to note that the ratio z,/z,, is nearly 
equal to A, except for A=O.l. The values of development length due to Bhatti7 are also given in 
Table 11. Bhatti's values are lower for 1~0.7 and the difference is as much as 57 per cent for 
A=0-1. However, for 120.7, Bhatti's results overpredicted the development length by as much 15 
per cent. A similar observation regarding Bhatti's values was made by Garg and Velusamy.' 
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6. CONCLUSIONS 

The problem of laminar, three-dimensional flow development in the entrance region of ducts 
having elliptical cross-section has been solved using the complete Navier-Stokes equations. 
Numerical results are compared with earlier numerical and experimental data. The following 
conclusions are drawn: 

(i) The relative growth rate of boundary layer thickness along the major axis of the duct is 
slower than that along the minor axis. 

(ii) In the developing region, the isoaxial-velocity contours are not concentric ellipses contrary 
to such an assumption in the earlier analyses. 

(iii) The fully developed value of the pressure defect is almost independent of the duct aspect 
ratio and equal to 1-234. 

(iv) The smaller the aspect ratio, the shorter is the development length. Also, the ratio of 
development length in an elliptical duct to that in a circular duct with radius equal to the 
semi-major axis of the elliptical duct is nearly equal to the aspect ratio for all 1120.3. 

(v) Although the local velocity values predicted by the momentum integral method7 are in 
substantial error, the duct average pressure and pressure defect are quite reasonable. 

U 

b 
C 

Dh 

E(m) 
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K 
m 
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R,  
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U 

V 

we 
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X 
Y 

U 
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X 

APPENDIX I:  NOMENCLATURE 

semi-major axis of the elliptical section 
semi-minor axis of the elliptical section 
focal distance of the elliptical section 
hydraulic diameter of the elliptical section 
complete elliptic integral of second kind 
(c/Dh)(sinh2 q + sin2 ()'Iz 
pressure defect 
(1 - 1 1 y  
number of control volumes in the cross-section for the variable 4 
total dimensional pressure (function of 5, q, z) 
total dimensionless pressure [ = p / ( p w z ) ]  
dimensional duct pressure averaged over the cross-section 
dimensionless duct pressure [ = p / (  pw:)]  averaged over the cross-section 
dimensional deviational pressure (function of 5, q) 
dimensionless deviational pressure [ = p'Di / (pv2 ) ]  
residue of the discretized equation for ith control volume for the variable 4 
Reynolds number (= w,&/v) 
absolute sum of ri9 taken over n4 
velocity component in the (-direction 
dimensionless counterpart of u ( = uDh/v) 
velocity component in the ?-direction 
dimensionless counterpart of u (= uDh/v) 
velocity component in the z-direction 
uniform axial velocity at the entrance 
dimensionless counterpart of w (= w/w,)  
cross-stream Cartesian co-ordinate (Figure 1) 
dimensionless co-ordinate (= x/u) 
cross-stream Cartesian co-ordinate (Figure 1) 
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Y 
Z axial co-ordinate (Figure 1) 
Z 

dimensionless co-ordinate ( = y/b) 

dimensionless axial co-ordinate [ = z/(& Re)]  

Greek letters 

6 boundary layer thickness 
E 

? 
A 
V 
P density of the fluid 
5 

a small number for checking convergence 
elliptic cylinder co-ordinate (Figure 1) 
aspect ratio of the duct (= b/a) 
kinematic viscosity of the fluid 

elliptic cylinder co-ordinate (Figure 1) 

Subscripts 

C 

f 
W 

co 

4 

value corresponding to a circular duct 
value corresponding to 100 per cent fully developed flow 
value at the duct wall 
value at an axial location where the centreline axial velocity is 99 per cent of the fully 
developed value 
value pertaining to the variable 4 

APPENDIX I1 

The discretization equations are derived by integrating the governing partial differential equa- 
tions over their respective control volumes. The control volumes corresponding to the cross- 
stream velocity components, U and V, are staggered in their respective directions, 5 and ?, as 
shown in Figure 6. 

Integration of <-momentum equation (24  over the control volume surrounding point e in 
Figure 6, i.e. over the control volume extending from rp to tE, qse to qne, and Zu to z d  (where 
subscripts u and d denote upstream and downstream locations, respectively) yields 

where the fluxes J are given by 

Jde= 1 wu I d e  H A t  Aq, Jue = C W u  1 uc  H 2 N  A?, 
and the source term s, is given later. Integration of continuity equation (1) over the same control 
volume, multiplication by Ue, and subtraction from equation (6) yields 

[ JE-FE ue 1 - [ JP-FP Ue 1 + [ Jne-Fne u e  1 - [ J s e  -Fse u e  1 + [ Jdc-Fde UeI- [ Jue-Fue ue 1 
=(P;- P;E) H a q  AZ + S,. (7) 

where the F’s are defined later. From the generalized formulation for combining the convective 
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” V - CONTROL VOLUME 
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Figure (6). Staggered grid layout. 

and diffusive fluxes (Reference 11, p. 99), equation (7) reduces to 

a, U, = a,, u,, + a, U, + a N e  UN, +a, U S ,  + aue u,, +(Pb - Pk) H Aq AZ + St, (8) 
where 
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and the symbol I[. 4 indicates the maximum of the values contained. The definition of function 
A depends upon the scheme used in Reference 11. For example, for the upwind scheme A =  1, 
while for the power-law scheme A = 10, (1 - 0 1  1 P 1)’j. 

Similarly, the discretization equation for q-momentum can be derived by integrating equation 
(2b) over the control volume surrounding point n in Figure 6 to yield 

(9) a, Vn=anE VnE +a,w Vnw + ann v,, + Us 4- aun V,, +(Pk- Ph)fi At A 2  4- gq, 
I 

where the coefficients a’s are similar to those in equation (8), and 

A similar integration performed in equation (2c) over the control volume surrounding point 
P in Figure 6 yields 

apWp=aE WE + WW + aN WN + US WS + au WuP + S Z  3 (10) 

where coefficients a’s are similar to those in equation (8), and 

aP - 
az S, = -- H= A( AV AZ. 

The continuity equation (l), upon integration over the control volume surrounding point P 
in Figure 6, yields 

[(HU),-(HU),] Art AZ+ [(H?‘)n-(ZfV)s] At AZ= - [ Wp- Wup]HzAt Aq. (1 1) 

It may be noted that a fully implicit procedure is adopted in the parabolic 2-direction. Hence, in 
equations (8)-(lo), the unknowns without the subscript ‘u’ correspond to the downstream 
2-plane and those with the subscript ‘u’ correspond to the upstream 2-plane. 
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